Revision of Failed Lateral Meniscal Allograft Transplant

MAJ Christopher J. Roach, MD, MAJ Brett D. Owens, MD, and COL Thomas M. DeBerardino, MD

Abstract: Meniscus allograft transplantation (MAT) is an acceptable procedure for the younger patient with a meniscus-deficient knee that has not yet developed advanced arthrosis. Numerous reports on good short-term clinical outcomes are present in the literature; however, reports on failures and revision MAT are relatively scarce. We report a case of a failed lateral MAT with the slotted bone technique, revised with a bone plug technique. We also review the literature for failed MAT and analyze the mode of failure in this case.

Key Words: meniscus allograft transplant, revision meniscus allograft transplant, meniscus allograft bone plug technique

(Tech Knee Surg 2009;8: 64–66)

The meniscus is important for load transmission, shock absorption, joint congruity, and stability.1 Meniscectomy can lead to degenerative knee changes evidenced by increased contact pressures and increased degenerative changes.2–7 Meniscal allograft transplantation has been shown to have a protective effect on the development of degenerative articular cartilage changes in experimental animal studies and can improve pain and functionality in selected patients.2,3,8 Multiple techniques have been used for meniscal allograft transplantation. Although soft tissue–only fixation techniques have been reported, superior clinical results have been shown with bony fixation.6 Both slotted and bone plug techniques have been described with good clinical results.6–16 We report a case of failed lateral meniscal allograft performed using the slotted technique, which was successfully revised with a bone plug technique. We reviewed the literature for failed meniscal allograft transplant, analyzed the mode of failure in this case, and highlighted the advantages of the bone plug technique.

CASE

T.D. is a 37-year-old active-duty male soldier who complains of approximately 10 years of right-knee pain. In 1995, he sustained an unclear knee injury during military training. He coped with his symptoms until undergoing a knee arthroscopy and partial lateral meniscectomy for a lateral meniscal tear in 2001. Two years later, he underwent a second arthroscopic partial lateral meniscectomy for continued symptoms. In January 2005, he underwent a third knee arthroscopy with partial lateral meniscectomy, and a meniscal allograft was ordered. In March, 2005, his size-matched fresh-frozen lateral meniscal allograft was obtained, and the patient underwent a knee arthroscopy with a lateral meniscal allograft transplantation using a slotted technique with an interference screw.12

The patient did fairly well postoperatively; however, he continued to complain of lateral pain and was referred to us for evaluation. On examination, his limb alignment was grossly normal. His knee had no effusion and was stable on varus and valgus stress testings. The Lachman examination result was positive (grade 2B), and the posterior drawer test result was negative. The result of the McMurray testing was positive for lateral joint-line tenderness and pain. Plain radiographs were obtained to include bilateral Rosenberg and standing weight-bearing alignment views. These showed no degenerative changes in the lateral compartment and normal limb alignment. Magnetic resonance imaging (MRI) was obtained and showed heterogeneous signal changes of increasing degree for the midbody of the allograft to the anterior horn. The anterior cruciate ligament (ACL) fibers were also attenuated at their tibial insertion.

In November 2005, this patient underwent diagnostic arthroscopy where a failure of the lateral meniscal allograft was noted. The anterior horn of the allograft meniscus was detached from its bony insertion. The exposed allograft bone did not appear to have undergone any healing to the host tibia (Fig. 1). The allograft and lax ACL were debrided, and a second meniscal allograft was ordered.

In July 2006, this patient underwent a revision lateral meniscal allograft using bone plugs (Fig. 2) and a concomitant ACL reconstruction with tibialis allograft. The technique used involves the drilling of a separate tibial tunnel for both the anterior and posterior bone plugs. The allograft meniscus is placed arthroscopically, and the bone plugs are secured by tying the sutures exiting the tibial tunnels over a bony bridge.18–19 Rehabilitation involved toe-touch weight bearing and flexion to 90 degrees for the first 6 weeks. The patient wore a knee immobilizer during this time. He was progressed to full weight bearing and full motion by 8 weeks. Progressions of quadriceps strength and aerobic activities were followed for the next several months until return to duty.

DISCUSSION

Preoperative evaluation and patient selection play large roles in the success of meniscal allograft transplants. Preoperative plain radiographs can evaluate lower extremity alignment and osteoarthritic changes such as joint-space narrowing, osteophyte formation, or condylar squaring. Osteophytes that interfere with anterior horn seating may also be detected radiographically. Magnetic resonance imaging may further define articular cartilage defects or advanced arthrosis. Clinical examination determines ligamental stability and muscular weakness or atrophy. Before the original meniscal allograft transplant in this case, preoperative radiographs and MRI revealed a well-aligned lower extremity with no evidence of advanced articular cartilage injury or ligamentous injury. The examination revealed a stable knee with adequate muscular tone and strength.

Numerous meniscal allograft transplant outcome studies have reported good results of pain relief and increased function evidenced by improvements in various subjective knee scoring.

From the Orthopedic Surgery Service, Keller Army Hospital, US Military Academy, West Point, New York, New York, U.S.A.

The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or reflecting the views of the Department of Defense or the United States government. The authors are employees of the US government.

No grant funding was received for this study.

Address correspondence and reprint requests to MAJ Brett D. Owens, MD, Keller Army Hospital, US Military Academy, West Point, New York, NY 10996. E-mail: b.owens@us.army.mil.

Copyright © 2009 by Lippincott Williams & Wilkins.

Techniques in Knee Surgery • Volume 8, Number 1, March 2009

Copyright © 2009 Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.
In addition, many of these studies have shown that bony fixation for the meniscal horns best approximates contact pressures in knees with intact menisci compared with either no horn attachment or suture attachment. The decreased contact pressures can be achieved with a bony bridge containing bone horns or separate bony plugs. The importance of osseous fixation was manifested by Noyes and Barber-Westin who reported a 58% failure rate for irradiated grafts implanted without bony fixation, although some of the failed grafts were implanted in patients with advanced arthrosis. Rodeo reported clinical success in 88% of transplants performed with osseous fixation compared with the 47% performed without. Although we have had success with bony fixation, studies have also shown good short-term clinical results using suture fixation only.

In our case, the senior author chose to revise the slot technique used in the primary transplantation to the arthroscopic technique using individual bone plugs. This technique was chosen for several reasons. The main reason is that the slot technique was felt to fail in large part because of a nonunion of the allograft and the host bone. Using a slot technique for the revision would have mandated enlarging the original slot back to the fresh bone and using a larger slotted allograft on the transplanted graft, thus causing increased surgical morbidity to the involved compartment and undermining the tibial footprint of the ACL. The senior author has performed more than 120 meniscal transplants for the past decade using this technique and feels that it is easier to obtain accurate placement of the anterior and posterior bone plugs within the anatomically drilled tibial sockets. In addition, the allograft bone is the most immunogenic portion of the implanted construct. The slot technique exposes the bulk of the allograft bone to the synovial fluid that may be counterproductive to healing between the host and transplanted bone. The bone plug technique uses a minimal amount of immunogenic bone and leaves no allograft bone exposed to the synovial fluid.

Other complications that can lead to failure of a MAT are poor peripheral graft ingrowth and aggressive rehabilitation causing too much early graft displacement. de Boer and Koudstaal reported on 3 failed MATs and concluded that

major factor in the mechanical failure of our lateral MAT in this case.

The choice of technique has had a significant impact on the outcomes of meniscal allograft transplantation. Cadaver studies have shown that bony fixation for the meniscal horns best approximates contact pressures in knees with intact menisci compared with either no horn attachment or suture attachment. The decreased contact pressures can be achieved with a bony bridge containing bone horns or separate bony plugs. The importance of osseous fixation was manifested by Noyes and Barber-Westin who reported a 58% failure rate for irradiated grafts implanted without bony fixation, although some of the failed grafts were implanted in patients with advanced arthrosis. Rodeo reported clinical success in 88% of transplants performed with osseous fixation compared with the 47% performed without. Although we have had success with bony fixation, studies have also shown good short-term clinical results using suture fixation only.

In our case, the senior author chose to revise the slot technique used in the primary transplantation to the arthroscopic technique using individual bone plugs. This technique was chosen for several reasons. The main reason is that the slot technique was felt to fail in large part because of a nonunion of the allograft and the host bone. Using a slot technique for the revision would have mandated enlarging the original slot back to the fresh bone and using a larger slotted allograft on the transplanted graft, thus causing increased surgical morbidity to the involved compartment and undermining the tibial footprint of the ACL. The senior author has performed more than 120 meniscal transplants for the past decade using this technique and feels that it is easier to obtain accurate placement of the anterior and posterior bone plugs within the anatomically drilled tibial sockets. In addition, the allograft bone is the most immunogenic portion of the implanted construct. The slot technique exposes the bulk of the allograft bone to the synovial fluid that may be counterproductive to healing between the host and transplanted bone. The bone plug technique uses a minimal amount of immunogenic bone and leaves no allograft bone exposed to the synovial fluid.

Other complications that can lead to failure of a MAT are poor peripheral graft ingrowth and aggressive rehabilitation causing too much early graft displacement. de Boer and Koudstaal reported on 3 failed MATs and concluded that

FIGURE 1. Nonunion of slotted lateral meniscal allograft transplantation.

FIGURE 2. Revision lateral meniscal allograft transplantation using arthroscopic bone plug technique.
factors that interfere with graft vascularization, such as instability or malalignment, can lead to incomplete graft healing and early degeneration and loosening. This case illustrates the importance of knee stability for graft healing, considering that the rehabilitation protocol included limited no weight bearing for the first 6 weeks. An overly aggressive therapy regimen was not followed, but the patient did have an unstable knee due to ACL insufficiency. The instability likely had a role in the failure of the graft to heal at both the bone and soft tissue interfaces.

Meniscal allograft transplantation can provide pain relief and improve function in carefully selected patients. Preoperative evaluations of knee stability and alignment are essential in assuring the best chance for healing and long-term survival of a meniscal allograft. Bony attachment of meniscal horns have decreased intra-articular contact pressures and improved results. Mechanical failure of meniscal allografts are relatively rare in stable and well-aligned knees. Revision allograft in situations of graft failure with combined ligament reconstruction in cases of knee instability may be successful in certain cases. Further outcome studies are needed to determine the long-term effectiveness of meniscal allograft transplantation.

REFERENCES